208. Synthesis and Chiroptical Properties of Dimethyl 8,12-Diphenylbenzo[d]heptalene-6,7-dicarboxylate

by Andreas J. Rippert ${ }^{1}$) and Hans-Jürgen Hansen*
Organisch-chemisches Institut der Universität, Winterthurerstrasse 190, CH-8057 Zürich
Dedicated to Arnold Brossi on the occasion of his 70th birthday

(23.IX.93)

Abstract

6,10-Diphenylbenz[a]azulene (3) was reacted with dimethyl acetylenedicarboxylate (ADM) in the presence of $2 \mathrm{~mol}-\%$ of $\left[\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ in MeCN at 100° to yield a $7: 1$ mixture of dimethyl 2,6 -diphenyl- 9,10 -benzotricyclo$\left[6.2 .2 .0^{1,7}\right]$ dodeca-2,4,6,9,11-pentaene-11,12-dicarboxylate (4) and dimethyl 8,12 -diphenylbenzo $[d]$ heptalene- 6,7 dicarboxylate ($5 ;$ Scheme 2). The tricycle 4, when heated in DMF at 150° for 1 h led to the formation of 81.5% of the heptalene-6,7-dicarboxylate 5 and 15% of the starting azulene 3 . No rearrangement of tricycle 4 was observed, when it was heated at temperatures up to 180° in pseudocumene. The heptalene-6,7-dicarboxylate 5 was easily separated into its antipodes ($P M$)- and (MP)-5 on a Chiracel column (cf. Fig. 2). On heating at 150° for $1 \mathrm{~h},(M P)-5$ showed no racemization at all. The Ru-catalyzed reaction of benz $[a]$ azulene (6) with ADM led to the formation of dimethyl 9,10-benzotricyclo[6.2.2.0 ${ }^{1.7}$]dodeca-2,4,6,9,11-pentaene-11,12-dicarboxylate (7; Scheme 3). However, the formation of the corresponding heptalene-6,7-dicarboxylate could not be observed.

Introduction. - Recently, we described the chemical transformation of colchicine (1; $\mathrm{R}=\mathrm{H}$) and some of its 4-alkyl derivatives into their underlying parent structures 2, i.e. the corresponding 1,2,3,9,10-pentamethoxybenzo[d]heptalenes (Scheme 1) [1][2]. Since compounds 2 represent, to the best of our knowledge, the first members of the class of benzo[d]heptalenes ${ }^{2}$), we were interested in another synthetic access to this class of compounds, which would also represent the basis of a new and variable approach to colchicinoid-type compounds ${ }^{3}$). Our recent success in the improvement of the synthesis

[^0]of heptalene-1,2-dicarboxylates from azulenes and dimethyl acetylenedicarboxylate (ADM) in polar aprotic solvents such as MeCN in the presence of $\left[\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ [11] as well as of other transition-metal catalysts [12] led us to investigate the reaction of benz $[a]$ azulenes with ADM in the presence of transition-metal catalysts in polar aprotic solvents. Here, we report on first results of this synthetic approach to colchicinoid compounds.

Results and Discussion. - The reaction of 6,10-diphenylbenz[a]azulene (3) [3] with a four-fold molar excess of ADM in the presence of $2 \mathrm{~mol} \%$ of $\left[\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ in MeCN at 100° yielded, after $18 \mathrm{~h}, 71 \%$ of the tricycle 4 and 9.5% of the benzo[d] heptalene-6,7-dicarboxylate 5 alongside with 16% of recovered azulene $\mathbf{3}$ (Scheme 2). The tricycle 4 could easily be transformed into the benzo[d]heptalene 5 by heating in DMF at 150° for 1 h (Scheme 2). The starting azulene 3 was formed in this reaction to an extent of 15%. In

${ }^{\text {a }}$) 85% and 11.5%, respectively, with regard to reacted 3 .
agreement with our earlier findings that tricycles of type 4 rearrange smoothly into heptalenes in aprotic polar solvents (cf. [14] [15]), we observed no rearrangement of 4 into 5 in pseudocumene as solvent, even at 180°. On the other hand, the transformation of 3 and ADM into 5 could also be performed without the catalyst in DMF at 150°. However, no reaction occurred at 100°. The yield of 5 in the purely thermal reaction of 3 and ADM after 18 h amounted to 28% in the presence of 24.5% of recovered 3 . The tricycle 4 could not be detected in this reaction, i.e. the rate-determining step in the uncatalyzed reaction at 150° is the Diels Alder-type addition of ADM to 3.

We also investigated the catalyzed addition of ADM to benz[a]azulene (6) [16]. In this case, a reaction took place already at 60° (Scheme 3). From the reaction mixture, which mainly consisted of chromatographically unmoving material, only small amounts of the tricycle 7 and traces of the azulene-1,2-dicarboxylate $\mathbf{8}$ could be isolated. There was no indication for the presence of the corresponding dimethyl benzo $[d]$ heptalene- 6,7 -dicarboxylate or the formation of the latter compound from the tricycle 7. Indeed, tricycle 7 decomposed slowly to form 8 as the sole identifiable product. The formation of azulene 8 is best explained by a heterolytic cleavage of the $\mathrm{C}(1)-\mathrm{C}(12)$ bond in 7 and formation of a new bond between $\mathrm{C}(6)$ and $\mathrm{C}(12)$. As a rule, this type of intermediates are always formed from tricycles of type 7 which carry no substituent at $\mathbf{C}(6)$ and $\mathbf{C}(8)$ (cf. [11] [14] [15]). The discussed intermediates are stabilized by prototropic shifts to yield correspond-

Scteme 3

${ }^{3}$) Tricycle 7 was formed in less than 15%. Azulene 8 was isolated in traces ($<1 \%$).
ing 3,4-ethano-bridged azulene-1,2-dicarboxylates. In the present case, this stabilization is not possible, i.e. 8 must be formed from the intermediate by a dehydrogenation reaction. Nevertheless, both addition reactions show that benz[a]azulenes easily react with ADM in the presence of $\left[\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ in MeCN to yield tricyclic intermediate of types 4 and 7 which can be rearranged in aprotic polar solvents such as DMF into the corresponding benzo $[d]$ heptalenes, at least, when $C(6)$ of the tricycles is substituted.

The structure of the tricycles 4 and 7 follows unequivocally from their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. Quite characteristic is the low-field position of the signal of $\mathrm{H}-\mathrm{C}(8)$ which appears in CDCl_{3} as well as in $\mathrm{C}_{6} \mathrm{D}_{6}$ around 4.5 ppm (cf. Exper. Part and [14] [15]). The neighboring H -atoms at the completely planar seven-membered ring (cf. [14] [15]) show vicinal coupling constants of $c a .12 \mathrm{~Hz}$ across $\mathrm{C}=\mathrm{C}$ bonds and $c a .7 .4$ to 8.7 Hz across C-C bonds (cf. Exper. Part as well as [14] [15]).

The rearrangement of 4 into 5 is characterized by a tremendous low-field shift of the s for $\mathrm{H}-\mathrm{C}(8)$ in $\mathbf{4}(4.51 \mathrm{ppm})$. It appears in 5 as s at $8.41 \mathrm{ppm}(c f$. Fig. I) due to its new

Fig. 1. ${ }^{1} H-N M R$ Spectrum $\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right)\right.$ acetone) of dimethy/8,12-diphenylbenzo/d/heptalene-6,7-dicarboxylate (5 ; region of the olefinic and aromatic H -atoms)
position at $\mathrm{C}(5)$ in conjugation to the ester group at $\mathrm{C}(6)$. Quite typical for the heptalene structure of 5 is also ${ }^{3} J(9,10)=6.5 \mathrm{~Hz}(c f .[17])$ which indicates a torsion angle Θ between the two neighboring H -atoms of $30-35^{\circ}$ as it is found for most of the heptalenes with at least two substituents in their peri-positions (cf. [17] [18]). One also observes a pronounced shift difference between $\mathrm{H}-\mathrm{C}(4)$ (7.73 ppm) and $\mathrm{H}-\mathrm{C}(1)(6.63 \mathrm{ppm})$ which indicates that $\mathrm{H}-\mathrm{C}(1)$ must immerse in the π-cloud of the Ph substituent at $\mathrm{C}(12)$. The spatial relation of $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(5)$ was secured by an observed strong reciprocal ${ }^{1} \mathrm{H}$-NOE between these two H -atoms. Therefore, there is no doubt about the benzo[d]heptalene structure of 5 .

The heptalene structure of $\mathbf{5}$ is further secured by the CD spectra of its two antipodes (cf. Fig.2), which were easily separated on a Chiracel OD column. The antipodes turned out to be optically very stable. We were not able to racemize them by heating up to 150°,

Fig. 2. a) CD Spectra (hexane/i-PrOH 93:7) of (PM)- and (MP)-5; b) Comparison of the CD spectra (hexane/ i-PrOH 93:7) of dimethyl (\mathbf{M})- and (\mathbf{P})-5,6,8,10-tetramethylheptalene-1,2-dicarboxylate (\mathbf{M})-and (\mathbf{P})-9) [19] with those of (MP)-5
at least during 1 h . We assign the ($M P$)-configuration ${ }^{4}$) to the antipode of 5 which shows a nearly perfect agreement of its longest-wavelength + CE at $363-367 \mathrm{~nm}$ with that of the (M)-configurated antipode of dimethyl 5,6,8,10-tetramethylheptalene-1,2-dicarboxylate ((M)-9; cf. Fig. 2, b) [19] ${ }^{5}$). We suppose that the strong -CE at 293 nm is mainly determined by the spatial (M)-helical arrangement of the benzo ring and the Ph substituent at $\mathrm{C}(12)$ (cf. [22]). The work is continued.

We thank Prof. M. Hesse and his coworkers for mass spectra, Prof. W. von Philipsborn and his coworkers for NMR support, and H. Frohofer for elemental analyses. The financial support of this work by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung is gratefully acknowledged.

Experimental Part

General. See [11] [18]. M.p. on a Büchi apparatus (model FP5); values are not corrected. UV spectra on an Otsuka spectrophotometer (model MCPD 1100). IR spectra on a Perkin-Elmer spectrophotometer (model FT-IR 1600). 'H-NMR spectra on Bruker instruments (models $A C 300$ and $A M X 600$). CD spectra were measured on a $J a s c o$ spectropolarimeter (model $J-500 A$). HPLC separations on a Chiracel $O D$ column ($25.0 \times 0.46 \mathrm{~cm}$) from Daicel Chemical Industries, equipped with a corresponding pre-column $(5.0 \times 0.46 \mathrm{~cm})$.

1. Benz[a]azulenes.-1.1. Benz/a]azulene (6). It was synthesized from anthranilic acid and 1,1-dichloroethene following the procedure of Wege and coworkers [16] ${ }^{6}$). M.p. 187.2-188.3 ${ }^{\circ}$ (EtOH; [16]: 189-190 $)$.
1.2. 6,10-Diphenylbenz/a a azulene (3). It was synthesized according to the procedure developed by Kapicak and Battiste [13]. M.p. 135.2-135.9 ${ }^{\circ}$ (EtOH; [13]: 136-1370).
2. Reaction of the Benz[a]azulenes with Dimethyl Acetylenedicarboxylate (ADM). - All reactions were performed under Ar in oven-dried Schlenk vessels. MeCN (Fluka, puriss.) and ADM (Fluka, puriss.) were distilled before use. DMF (Fluka, puriss.) and 1,2,4-trimethylbenzene (Fluka, puriss.) were used without further purification.
2.1. 6, 10-Diphenylbenz/ a Jazulene (3) and ADM. Azulene $3(0.270 \mathrm{~g}, 0.82 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN}(5 \mathrm{ml})$ and ADM ($0.44 \mathrm{ml}, 3.23 \mathrm{mmol}$) and $\left[\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.022 \mathrm{~g} ; 2 \mathrm{~mol}-\%)$ added. The Schlenk vessel was closed and the mixture heated at 100° for 18 h . The solvent was distilled off and the residue separated by CC (silica gel; hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1$) to yield in a first fraction $3(0.043 \mathrm{~g}, 15.9 \%$), followed by dimethyl (IRS, 8 SR)-2,6-diphenyl-9,10benzotricyclo[6.2.2.0 ${ }^{1.7}$]dodeca-2,4,6,9,11-pentaene-11,12-dicarboxylate ($4 ; 0.272 \mathrm{~g}, 71.2 \%$), and, finally, by dimethyl ($7 a \mathrm{PM}, 12 a \mathrm{MP}$)-8,12-diphenylbenzo/ d/heptalene-6,7-dicarboxylate (5; $0.037 \mathrm{~g}, 9.6 \%$).

Data of 4. M.p. 111° (dec.; hexane). R_{f} (hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1$) 0.49 . UV (hexane): $\lambda_{\text {max }} 370(\mathrm{sh}, 3.76), 350(\mathrm{sh}, 3.90)$, 282 (sh, 4.43), $250(4.60) ; \lambda_{\text {min }} 240(4.58)$. IR (KBr): $3059 w, 3024 w, 2948 w, 2925 w, 2850 w, 1718 s, 1436 m, 1264 m$, $1206 m, 1127 m, 1068 w, 1024 w, 757 m, 701 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.70-7.67(\mathrm{~m}, 2$ arom. H$) ; 7.48(d$, with f.s., $J_{\text {urtho }}=7.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$); 7.38-7.28 ($\mathrm{m}, 8$ arom. H); 7.12-7.04 ($\mathrm{m}, 3 \mathrm{arom} . \mathrm{H}$); $6.06\left(d,{ }^{3} J(4,3)=8.73, \mathrm{H}-\mathrm{C}(3)\right)$; $5.78\left(d d,{ }^{3} J(3,4)=8.71,{ }^{3} J(5,4)=11.99, \mathrm{H}-\mathrm{C}(4)\right) ; 5.60\left(d,{ }^{3} J(4,5)=11.94, \mathrm{H}-\mathrm{C}(5)\right) ; 4.51(s, \mathrm{H}-\mathrm{C}(8)) ; 3.69(s$, $\mathrm{MeOCO}-\mathrm{C}(12)) ; 3.13$ ($s, \mathrm{MeOCO}-\mathrm{C}(11)$).

[^1]Data of 5. M.p. 162° (hexane/acetone). R_{f} (hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1$) 0.28 . UV (hexane): $\lambda_{\max } 358$ (sh, 3.56), 284.4 (4.40), 245 (sh, 4.41), 223.5 (4.51); $\lambda_{\text {min }} 268.2$ (4.37), 219.3 (4.50). IR (KBr): 3018w, 2947w, 1716s, 1434m, 1271s, 1237s, $1202 \mathrm{~m}, 1129 \mathrm{~m}, 1105 \mathrm{~m}, 1070 \mathrm{w}, 1032 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right)\right.$ acetone; cf. Fig. I$): 8.413(\mathrm{~s}, \mathrm{H}-\mathrm{C}(5))$; $7.727\left(d t,{ }^{3} J(3,4)=7.81,{ }^{4} J(2,4)=1.25,{ }^{5} J(1,4)=0.63, \quad \mathrm{H}-\mathrm{C}(4)\right) ; 7.411 \quad\left(t d,{ }^{3} J(4,3)=7.81,{ }^{3} J(2,3)=7.39\right.$, $\left.{ }^{4} J(1,3)=1.26, \mathrm{H}-\mathrm{C}(3)\right) ; 7.253\left(t d,{ }^{3} J(1,2)=7.72,{ }^{3} J(3,2)=7.38,{ }^{4} J(4,2)=1.28, \mathrm{H}-\mathrm{C}(2)\right) ; 7.18-7.16(m, 2$ arom. $\mathrm{H}) ; 7.13-7.10\left(\mathrm{~m}, 6\right.$ arom. H); $7.056\left(d,{ }^{3} J(10,9)=6.52, \mathrm{H}-\mathrm{C}(9)\right) ; 6.958\left(d d,{ }^{3} J(11,10)=11.44,{ }^{3} J(9,10)=6.55\right.$, $\mathrm{H}-\mathrm{C}(10)) ; 6.91-6.89(m, 2$ arom. H$) ; 6.687\left(d,{ }^{3} J(10,11)=11.40, \mathrm{H}-\mathrm{C}(11)\right) ; 6.628\left(d t,{ }^{3} J(2,1)=7.72\right.$, $\left.{ }^{4} J(3,1)=1.25,{ }^{5} J(4,1)=0.63, \mathrm{H}-\mathrm{C}(1)\right) ; 3.728(s, \mathrm{MeOCO}-\mathrm{C}(6)) ; 3.171(s, \mathrm{MeOCO}-\mathrm{C}(7)) .{ }^{1} \mathrm{H}-\mathrm{NOE}(400 \mathrm{MHz}$, (D_{6})acetone): $8.413(\mathrm{H}-\mathrm{C}(5)) \rightarrow 7.727(s) ; 7.727(\mathrm{H}-\mathrm{C}(4)) \rightarrow 8.413(\mathrm{~s}), 7.411(s) ; 6.628(\mathrm{H}-\mathrm{C}(1)) \rightarrow 7.253(s)$,
 CI-MS $\left(\mathrm{NH}_{3}\right)$: $490.2\left(100,\left[M+\mathrm{NH}_{4}\right]^{+}\right)$. Anal. calc. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{4}(472.54)$: C 81.34, H 5.19; found: C 81.40, H 5.18.
2.1.1. Thermal Reaction of 4 . Tricycle $4(0.190 \mathrm{~g}, 0.40 \mathrm{mmol})$ was dissolved in DMF (5 ml) and heated at 150° for 1 h . After this time, the starting material had been vanished, and workup of the residue by CC (silica gel; hexane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1$) yielded $4(0.020 \mathrm{~g}, 15 \%)$ and $5(0.155 \mathrm{~g}, 81.5 \%)$.

In control experiments, 4 was heated for 1 h in 1,2,4-trimethylbenzene at 150° as well as at 180°. No change of 4 could be observed.
2.1.2. Purely Thermal Reaction of 3 with ADM. Benz[a]azulene $\mathbf{3}(0.020 \mathrm{~g}, 0.06 \mathrm{mmol})$ and ADM $(0.025 \mathrm{ml}, 0.2$ mmol) were dissolved in DMF (1 ml) and heated at 100° for 2 h . No reaction at all could be observed. When the temp. was raised to 150°, a slow reaction occurred. Workup (vide supra) after 18 h yielded 24.5% of starting azulene $3(0.005 \mathrm{~g})$ and 28% of $5(0.008 \mathrm{~g})$.
2.1.3. Optical Resolution of (PM, MP)-5. Racemic 5 was completely separated in anal. amounts on the Chiracel $O D$ column with hexane $/ \mathrm{i}-\mathrm{PrOH}\left(93: 7\right.$; flow rate $0.8 \mathrm{ml} / \mathrm{min}$) into its antipodes which showed $t_{\mathrm{R}} 12.4$ ($(M P)$-isomer) and $18.9 \mathrm{~min}((P M)$-isomer $)$.

CD (hexane/i-PrOH 93:7; $c=2.714 \cdot 10^{-5} \mathrm{~mol} / \mathrm{l}$; cf. Fig. 2) of (MP)-5: $240(0), 254$ (7,0, pos. max.), $276(0)$, 294 (-34.4, neg. max.), $319(0), 363$ (14.8, pos. max.), $490(0)$,

CD (hexane/i-PrOH 93:7; $c=2.714 \cdot 10^{-5} \mathrm{~mol} / \mathrm{l}$; cf. Fig. 2) of (PM)-5: 240 (0), 254 (-7.6 , neg. max.), 276 (0), 293 (34.5 , pos. max.), 319 (0), 367 (-14.9 , neg. max.), 490 (0).

Control Experiment. The (MP)-isomer, when heated in a sealed ampoule in hexane $/ \mathrm{i}-\mathrm{PrOH}(93: 7)$ at 150° for 1 h , showed no racemization at all according to its completely unchanged CD.
2.2. Benz/ a Jazulene (6) and ADM. Azulene $6(0.110 \mathrm{~g}, 0.618 \mathrm{mmol}$), ADM ($0.2 \mathrm{ml}, 1.6 \mathrm{mmol}$), and $\left[\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.015 \mathrm{~g}, 2 \mathrm{~mol}-\%)$ were dissolved in $\mathrm{MeCN}(5 \mathrm{ml})$ and heated at 60° for 2 h . All starting material had been consumed after this time. CC (silica gel; hexane/ $\mathrm{Et}_{2} \mathrm{O} 3: 2$) of the residue yielded mostly non-moving brownish material at the start of the column and a fraction (ca. $0.03 \mathrm{~g}, 15 \%$) which mainly contained dimethyl 9,10-benzotricyclo[6.2.2.0 ${ }^{1,7}$ 7dodeca-2,4,6,9,11-pentaene-11,12-dicarboxylate (7) and small amounts of dimethyl benzo/ $\mathrm{a} / \mathrm{cyclopent}$ / cd /azulene-I,2-dicarboxylate (8). The tricycle 7 decomposed on the column as well as in solution to form 8 as the sole identifiable product. Therefore, both products could only be characterized by their ${ }^{1} H$-NMR.
${ }^{1} H-N M R\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.157$)$ of $7: 7.20-7.10\left(2 \mathrm{dd}\right.$, partly covered by the signal of $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$, $\mathrm{H}-\mathrm{C}\left(3^{\prime}, 6^{\prime}\right)$; ; 6.88-6.74 (2 td, $\mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)$); $6.285\left(d,{ }^{3} J(3,2)=12.07, \mathrm{H}-\mathrm{C}(2)\right) ; 5.807\left(d d,{ }^{3} J(2,3)=12.19\right.$, $\left.{ }^{3} J(4,3)=7.69, \quad \mathrm{H}-\mathrm{C}(3)\right) ; 5.454\left(d d,{ }^{3} J(5,4)=11.79,{ }^{3} J(3,4)=7.71, \quad \mathrm{H}-\mathrm{C}(4)\right) ; 5.250 \quad\left(d d,{ }^{3} J(4,5)=11.86\right.$, $\left.{ }^{3} J(6,5)=7.43, \mathrm{H}-\mathrm{C}(5)\right) ; 4.787\left(d,{ }^{3} J(5,6)=7.40, \mathrm{H}-\mathrm{C}(6)\right) ; 4.498(s, \mathrm{H}-\mathrm{C}(8)) ; 3.390,3.210(2 s, 2 \mathrm{MeOCO})$.
${ }^{1} H-N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \mathrm{CHCl}_{3}\right.$ at 7.260$)$ of $8: 9.391\left(d,{ }^{3} J(3,4)=9.50, \mathrm{H}-\mathrm{C}(3)\right) ; 8.397\left(d,{ }^{3} J(6,5)=9.16\right.$, $\mathrm{H}-\mathrm{C}(6)) ; 8.319\left(t, \Sigma^{3} J(5,6)+{ }^{3} J(4,5)=19.59,{ }^{3} J(4,5)=10.43, \mathrm{H}-\mathrm{C}(5)\right) ; 8.068\left(t d\right.$-like, ${ }^{3} J(4,5)=10.42,{ }^{3} J(3,4)$ $\left.=9.58,{ }^{4} J(4,6)=0.85, \mathrm{H}-\mathrm{C}(4)\right) ; 7.992\left(d t-\right.$ like, ${ }^{3} J(9,10)=7.48,{ }^{4} J(8,10) \approx 2 \cdot{ }^{5} J(7,10),{ }^{4} J+{ }^{5} J=1.7, \mathrm{H}-\mathrm{C}(10)$); $7.645\left(d t\right.$-like, ${ }^{3} J(7,8)=7.52, \quad{ }^{4} J(7,9) \approx 2 \cdot{ }^{5} J(7,10),{ }^{4} J(7,9) \approx 0.8, \quad$ H-C $\left.(7)\right) ; \quad 7.456 \quad\left(t d, \quad{ }^{3} J(9,10)=7.51\right.$, $\left.{ }^{3} J(8,9)=7.57,{ }^{4} J(7,9)=1.11, \mathrm{H}-\mathrm{C}(9)\right) ; 7.26\left(t d ?\right.$, partly covered by the signal of $\left.\mathrm{CHCl}_{3}, \mathrm{H}-\mathrm{C}(8)\right) ; 4.112,3.975$ ($2 s, 2 \mathrm{MeOCO}$).

REFERENCES

[1] P. Kouroupis, Ph.D. Thesis, University of Zurich, 1993.
[2] P. Kouroupis, H.-J. Hansen, Helv. Chim. Acta, in preparation.
[3] D. Lloyd, 'Non-Benzenoid Conjugated Carbocyclic Compounds', Elsevier Science Publ. B. V., Amsterdam, 1984, p. 383 ff .
[4] K. Hafner, H.D. Diesel, W. Richarz, Angew. Chem. 1978, 90, 812; ibid. Int. Ed. 1978, 17, 763.
[5] Y. Sugihara, J. Saito, I. Murata, Angew. Chem. 1991, I03, 1203; ibid. Int. Ed. 1991, 30, 1174.
[6] K. Yamamoto, Y. Saitho, I. Twaki, T. Ooka, Angew. Chem. 1991, 103, 1202; ibid. Int. Ed. 1991, 30, 1173.
[7] I. Fleming, 'Selected Organic Syntheses', John Wiley \& Sons, London, 1973, p. 183ff.; 'Natural Products Chemistry', Eds. K. Nakanashi, T. Goto, S. Itô, S. Natori, and S. Nozoe, Kodansha Scientific Ltd. and Academic Press, Inc., Tokyo, 1975, Vol.2, p. 343ff.
[8] D. L. Boger, C. E. Brotherton, J. Am. Chem. Soc. 1986, 108, 6713.
[9] M. G. Banwell, Aust. J. Chem. 1991, 44, 1.
[10] E. Wenkert, H.-S. Kim, in 'Studies in Natural Products Chemistry', Vol. 3, 'Stereoselective Synthesis', Part B, Ed. Atta-ur-Rahman, Elsevier Publ., Amsterdam, 1989, p. 287.
[11] A. J. Rippert, H.-J. Hansen, Helv. Chim. Acta 1992, 75, 2219.
[12] A. J. Rippert, A. Linden, H.-J. Hansen, Helv. Chim. Acta 1993, 76, 2876.
[13] L.A.Kapicak, M.A. Battiste, Synthesis 1971, 153.
[14] R. A. Fallahpour, H.-J. Hansen, High Pressure Res. 1992, 11, 125.
[15] R.A. Fallahpour, Ph. D. thesis, University of Zurich; R. A. Fallahpour, H.-J. Hansen, Helv. Chim. Acta 1994, 77, in preparation.
[16] M.A. O'Leary, G. W. Richardson, D. Wege, Tetrahedron 1981, 37, 813.
[17] W. Bernhard, P. Brügger, J. J. Daly, G. Englert, P. Schönholzer, H.-J. Hansen, Helv. Chim. Acta 1985, 68 , 1010.
[18] Y. Chen, R. W. Kunz, P. Uebelhart, R. H. Weber, H.-J. Hansen, ibid. 1992, 75, 2447.
[19] W. Bernhard, P. Brügger, J. J. Daly, P. Schönholzer, R.H. Weber, H.-J. Hansen, Helv. Chim. Acta 1985, 68 , 415.
[20] U. Berg, J. Deinum, P. Lincolm, J. Kvassman, Bioorg. Chem. 1991, 19, 53.
[21] K. Hafner, G. L. Knaup, H. J. Lindner, Bull. Chem. Soc. Jpn. 1988, 61, 155.
[22] E. Charney, 'The Molecular Basis of Optical Activity', John Wiley \& Sons, New York, 1979; N. Harada, K. Nakanishi, 'Circular Dichroic Spectroscopy - Exciton Coupling in Organic Stereochemistry', Oxford University Press, Oxford, 1983; W. Runge, in 'The Chemistry of Ketenes, Allenes and Related Compounds', Ed.S. Patai, John Wiley \& Sons, Chichester, 1980, p. 99 ff.

[^0]: ${ }^{1}$) Part of the planned Ph. D. thesis of A.J. R., University of Zurich.
 ${ }^{2}$) For the chemistry of heptalenes and their annelated derivatives, see [3-5]. Recently, Yamamoto et al. reported the synthesis of [7.7]circulene, the fully benzannelated heptalene [6].
 ${ }^{3}$) See [7-9] for classical colchicine syntheses. For newer variants of the synthesis of colchicine-derived compounds, see [9] [10].

[^1]: ${ }^{4}$) The two descriptors of absolute helicity refer to the two twisted π-systems around the central $\mathrm{C}(7 \mathrm{a})-\mathrm{C}(12 \mathrm{a})$ heptalene bond and the peripheral $\mathrm{C}(12 \mathrm{a})-\mathrm{C}(12 \mathrm{~b})$ bond between the benzo ring and the non-benzo-annelated ring of the heptalene system. This means that the second stereochemical descriptors describes the helicity that is also found in colchicine and colchinoids ($c f .[20]$ and lit. cited there) as tetrahydrobenzola]heptalene derivatives.
 ${ }^{5}$) Racemic 9 was separated on the Chiracel $O D$ column (hexane $/ \mathrm{i}-\mathrm{PrOH} 93: 7$). The configuration of (M)- and (P)-9 had been determined by chemical correlation and confirmed by an X-ray crystal structure analysis [19] (cf. also [21]). We recognized that the antipodes of 5 and 9 showed just an inverse elution behavior, i.e. (MP)-5 und (P)-9 possess the shorter t_{R} as compared with their antipodes. It should also be mentioned that colchicine and deacetamidocolchicine as well as deacetamidoisocolchicine with the same (P)-configuration around the $\mathrm{C}(12 \mathrm{a})-\mathrm{C}(12 \mathrm{~b})$ bond as in (MP)-5 show qualitatively opposite CE to those of (MP)-5 (cf. [20]). However, we have to take into account that the tropolone ring in colchicine and its derivatives is nearly planar (cf. [1] [2] [20]), whereas its counterpart in the benzo[d] heptalenes is strongly twisted (cf. ${ }^{3} J(9,10)=6.5$ in 5 as well as [17] [18]).
 ${ }^{6}$) We thank cand. chem. Peter Nuesch for his cooperation in this synthesis.

